Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Zooplankton diel vertical migration (DVM) is critical to ocean ecosystem dynamics and biogeochemical cycles, by supplying food and injecting carbon to the mesopelagic ocean (200–800 m). The deeper the zooplankton migrate, the longer the carbon is sequestered away from the atmosphere and the deeper the ecosystems they feed. Sparse observations show variations in migration depths over a wide range of temporal and spatial scales. A major challenge, however, is to understand the biological and physical mechanisms controlling this variability, which is critical to assess impacts on ecosystem and carbon dynamics. Here, we introduce a migrating zooplankton model for medium and large zooplankton that explicitly resolves diel migration trajectories and biogeochemical fluxes. This model is integrated into the MOM6-COBALTv2 ocean physical-biogeochemical model, and applied in an idealized high-resolution (9.4 km) configuration of the North Atlantic. The model skillfully reproduces observed North Atlantic migrating zooplankton biomass and DVM patterns. Evaluation of the mechanisms controlling zooplankton migration depth reveals that chlorophyll shading reduces by 60 meters zooplankton migration depth in the subpolar gyre compared with the subtropical gyre, with pronounced seasonal variations linked to the spring bloom. Fine-scale spatial effects (<100 km) linked to eddy and frontal dynamics can either offset or reinforce the large-scale effect by up to 100 meters. This could imply that for phytoplankton-rich regions and filaments, which represent a major source of exportable carbon for migrating zooplankton, their high-chlorophyll content contributes to reducing zooplankton migration depth and carbon sequestration time.more » « less
-
{"Abstract":["This is an archive of model output from the Regional Ocean Modeling System (ROMS) with two grids and two-way nesting. The parent grid resolution (referred to as Doppio) is 7 km and spans the Atlantic Ocean off the northeast United States from Cape Hatteras to Nova Scotia. The refinement grid (referred to as Snaildel) focuses on Delaware Bay and the adjacent coastal ocean at 1 km resolution. This ROMS configuration uses turbulence kinetic energy flux and significant wave height from Simulating Waves Nearshore (SWAN) as surface boundary conditions for turbulence closure.Ocean state variables computed are sea level, velocity, temperature, and salinity. Also inclued are surface and bottom stresses, as well as vertical diffusivity of tracer and momentum. \nThe files uploaded here are examples of one time record from each of this dataset. Outputs for the full reanalysis, which comprises 14 Terabytes of data, are made available for download via a THREDDS (Thematic Real-time Environmental Distributed Data Services) web service to facilitate user geospatial or temporal sub-setting.\nThe THREDDS catalog URLs and example filenames available here, for the respective collections, are:\n\t- 12 minute snapshots of the Doppio domain 2009-2015:\nhttps://tds.marine.rutgers.edu/thredds/roms/snaildel/catalog.html?dataset=snaildel_doppio_history\n\t- 12 minute snapshots of the Snaildel domain 2009-2015:\nhttps://tds.marine.rutgers.edu/thredds/roms/snaildel/catalog.html?dataset=snaildel_snaildel_history\n \nGarwood, J. C., H. L. Fuchs, G. P. Gerbi, E. J. Hunter, R. J. Chant and J. L. Wilkin (2022). "Estuarine retention of larvae: Contrasting effects of behavioral responses to turbulence and waves." Limnol. Oceanogr. 67: 992-1005.\nHunter, E. J., H. L. Fuchs, J. L. Wilkin, G. P. Gerbi, R. J. Chant and J. C. Garwood (2022). "ROMSPath v1.0: Offline Particle Tracking for the Regional Ocean Modeling System (ROMS)." Geosci. Model Dev. 15: 4297-4311."]}more » « less
-
Exchange of material across the nearshore region, extending from the shoreline to a few kilometers offshore, determines the concentrations of pathogens and nutrients near the coast and the transport of larvae, whose cross-shore positions influence dispersal and recruitment. Here, we describe a framework for estimating the relative importance of cross-shore exchange mechanisms, including winds, Stokes drift, rip currents, internal waves, and diurnal heating and cooling. For each mechanism, we define an exchange velocity as a function of environmental conditions. The exchange velocity applies for organisms that keep a particular depth due to swimming or buoyancy. A related exchange diffusivity quantifies horizontal spreading of particles without enough vertical swimming speed or buoyancy to counteract turbulent velocities. This framework provides a way to determinewhich processes are important for cross-shore exchange for a particular study site, time period, and particle behavior.more » « less
-
Abstract. Offline particle tracking (OPT) is a widely used tool for theanalysis of data in oceanographic research. Given the output of ahydrodynamic model, OPT can provide answers to a wide variety of researchquestions involving fluid kinematics, zooplankton transport, the dispersionof pollutants, and the fate of chemical tracers, among others. In thispaper, we introduce ROMSPath, an OPT model designed to complement theRegional Ocean Modeling System (ROMS). Based on the Lagrangian TRANSport(LTRANS) model (North et al., 2008), ROMSPath is written in Fortran90 and provides advancements in functionality and efficiency compared toLTRANS. First, ROMSPath calculates particle trajectories using the ROMSnative grid, which provides advantages in interpolation, masking, andboundary interaction while improving accuracy. Second, ROMSPath enablessimulated particles to pass between nested ROMS grids, which is anincreasingly popular scheme to simulate the ocean over multiple scales.Third, the ROMSPath vertical turbulence module enables the turbulent(diffusion) time step and advection time step to be specified separately,adding flexibility and improving computational efficiency. Lastly, ROMSPathincludes new infrastructure which enables inputting of auxiliary parameters for addedfunctionality. In particular, Stokes drift can be input and added toparticle advection. Here we describe the details of these updates andperformance improvements.more » « less
-
Abstract The meroplanktonic larvae of many invertebrate and vertebrate species rely on physical transport to move them across the shelf to their adult habitats. One potential mechanism for cross‐shore larval transport is Stokes drift in internal waves. Here, we develop theory to quantify the Stokes velocities of neutrally buoyant and depth‐keeping organisms in linear internal waves in shallow water. We apply the analyses to theoretical and measured internal wave fields, and compare results with a numerical model. Near the surface and bottom boundaries, both neutrally buoyant and depth‐keeping organisms were transported in the direction of the wave's phase propagation. However, neutrally buoyant organisms were transported in the opposite direction of the wave's phase at mid depths, while depth‐keeping organisms had zero net transport there. Weakly depth‐keeping organisms had Stokes drifts between the perfectly depth‐keeping and neutrally buoyant organisms. For reasonable wave amplitudes and phase speeds, organisms would experience horizontal Stokes speeds of several centimeters per second—or a few kilometers per day in a constant wave field. With onshore‐polarized internal waves, Stokes drift in internal waves presents a predictable mechanism for onshore transport of meroplanktonic larvae and other organisms near the surface, and offshore transport at mid depths.more » « less
-
Abstract Coastal physical processes are essential for the cross‐shore transport of meroplanktonic larvae to their benthic adult habitats. To investigate these processes, we released a swarm of novel, trackable, subsurface vehicles, the Mini‐Autonomous Underwater Explorers (M‐AUEs), which we programmed to mimic larval depth‐keeping behavior. The M‐AUE swarm measured a sudden net onshore transport of 30–70 m over 15–20 min, which we investigated in detail. Here, we describe a novel transport mechanism of depth‐keeping plankton revealed by these observations. In situ measurements and models showed that, as a weakly nonlinear internal wave propagated through the swarm, it deformed surface‐intensified, along‐isopycnal background velocities downward, accelerating depth‐keeping organisms onshore. These higher velocities increased both the depth‐keepers' residence time in the wave and total cross‐shore displacement, leading to wave‐induced transports twice those of fully Lagrangian organisms and four times those associated with the unperturbed background currents. Our analyses also show that integrating velocity time series from virtual larvae or mimics moving with the flow yields both larger and more accurate transport estimates than integrating velocity time series obtained at a point (Eulerian). The increased cross‐shore transport of organisms capable of vertical swimming in this wave/background‐current system is mathematically analogous to the increase in onshore transport associated with horizontal swimming in highly nonlinear internal waves. However, the mechanism described here requires much weaker swimming speeds (mm s−1vs. cm s−1) to achieve significant onshore transports, and meroplanktonic larvae only need to orient themselves vertically, not horizontally.more » « less
An official website of the United States government
